Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site

نویسندگان

  • Zhongchuan Liu
  • Tian Xie
  • Qiuping Zhong
  • Ganggang Wang
چکیده

The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature of CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis.

The CotA laccase from the endospore coat of Bacillus subtilis has been crystallized in the presence of the non-catalytic co-oxidant 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), and the structure was determined using synchrotron radiation. The binding site for this adduct is well defined and indicates how ABTS, in conjunction with laccases, could act as an oxidative mediator toward...

متن کامل

Mycoremediation of Benzo[a]pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators

Benzo[a]pyrene is considered as a priority pollutant because of its carcinogenic, teratogenic and mutagenic effects. The highly recalcitrant nature of Benzo[a]pyrene poses a major problem for its degradation. White-rot fungi such as Pleurotus ostreatus can degrade Benzo[a]pyrene by enzymes like laccase and manganese peroxidase. The present investigation was carried out to determine the extent o...

متن کامل

Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores.

Directed evolution is an effective strategy to engineer and optimize protein properties, and microbial cell-surface display is a successful method to screen protein libraries. Protein surface display on Bacillus subtilis spores is demonstrated as a tool for screening protein libraries for the first time. Spore display offers advantages over more commonly utilized microbe cell-surface display sy...

متن کامل

Glucose oxidase nanotube-based enzymatic biofuel cells with improved laccase biocathodes.

Glucose/O(2) biofuel cells (BFCs) with an improved power density and stability were developed, using glucose oxidase (GOD) nanotubes with polypyrrole (PPy)-carbon nanotubes (CNTs)-GOD layers deposited on their surface as an anode and a PPy-laccase-2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) film type cathode. The GOD nanotubes were fabricated within the nanopores o...

متن کامل

Reduction of the 2,2'-Azinobis(3-ethylbenzthiazoline-6-sulfonate) cation radical by physiological organic acids in the absence and presence of manganese

Laccase is a copper-containing phenoloxidase, involved in lignin degradation by white rot fungi. The laccase substrate range can be extended to include nonphenolic lignin subunits in the presence of a noncatalytic cooxidant such as 2, 2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), with ABTS being oxidized to the stable cation radical, ABTS.+, which accumulates. In this report, we demons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2016